
Software Development, W25 Benjamin Hackl

Instructions: use the online assignment administration platform to indicate which problems you

have completed and are able to present. Create one short plain text file (.txt or .md) per problem in

which you discuss your solution. Name these files N.{txt, md}, where N is the problem number in

this list. Upload your solutions to our Moodle course.

1. Create a file that is 100 years old by learning about the touch command. Can you also create a

file that says it is from the year the University of Graz has been founded (1585)?

2. Create three empty files named file1.txt, file2.txt, file3.txt in your current directory.

Then, list all files in the directory sorted by their creation time (oldest first, newest last).

3. Use curl or wget to download the text file that is hosted at https://gist.githubusercontent.com/

MattIPv4/045239bc27b16b2bcf7a3a9a4648c08a/raw/2411e31293a35f3e565f61e7490a806d4720ea7e/

bee%2520movie%2520script, which contains the script of the Bee Movie. Use grep to find all lines

starting with the word Bee. How many such lines are there?

4. Complete the free demo part of https://vim-adventures.com/. What is in the chest in the maze?

5. Complete the tutorial shipped with every installed version of vim (command: vimtutor) or

neovim (command: nvim, followed by :Tutor). Alternatively: Learn how to navigate, edit, search,

replace using any CLI / terminal editor of your choice.

6. The file webserver.log contains the following content:

203.0.113.24 - - [25/Mar/2024:10:15:32 +0000] "GET /index.html HTTP/1.1" 200 2326

198.51.100.10 - - [25/Mar/2024:10:15:33 +0000] "GET /images/logo.png HTTP/1.1" 200 5432

203.0.113.24 - - [25/Mar/2024:10:15:34 +0000] "GET /css/style.css HTTP/1.1" 200 1054

192.0.2.42 - - [25/Mar/2024:10:15:35 +0000] "POST /login HTTP/1.1" 302 0

203.0.113.24 - - [25/Mar/2024:10:15:36 +0000] "GET /about.html HTTP/1.1" 200 3571

192.0.2.42 - - [25/Mar/2024:10:15:37 +0000] "GET /dashboard HTTP/1.1" 200 5123

198.51.100.10 - - [25/Mar/2024:10:15:38 +0000] "GET /products/item1234 HTTP/1.1" 404 1762

203.0.113.24 - - [25/Mar/2024:10:15:39 +0000] "POST /contact HTTP/1.1" 200 982

Use the programs cut, uniq, wc to determine the number of different visitor IP addresses

in this logfile. If you are satisfied, test your solution against the real sample logfile from

here: https://raw.githubusercontent.com/elastic/examples/refs/heads/master/Common%20Data%

20Formats/apache_logs/apache_logs.

7. At https://www.gutenberg.org/cache/epub/84/pg84.txt you can find a copy of the book Franken­

stein; Or, The Modern Prometheus.

• How many words and how many individual (string) characters are in the book?

• Print all lines containing the word Frankenstein (including a context of 1 line before and after).

8. There is a compressed .tar archive located at

https://imsc.uni-graz.at/hackl/teaching/cherry_tree.tar.gz

• Use curl or wget to download the archive.

• Learn about the tar command, figure out how to unpack the downloaded archive.

• Use find to find all files with a .txt file ending. How many are there?

• How many files contain the word cherry? How many of these “cherry-files” have a file name

ending with .txt?

9. Write a simple bash script greeting.sh that asks the user for their name and then greets them

personally, e.g., Hello, Benjamin!. Use read to get input from the user, and make sure your

script is interpreted by bash. What do you need to do to try out your script?

10. The code snippet :(){ :|:& };: defines a bash function and calls it; the code is, however,

written in a rather obfuscated way. What does it do? (Try running it, if you are brave.)

1

https://gist.githubusercontent.com/MattIPv4/045239bc27b16b2bcf7a3a9a4648c08a/raw/2411e31293a35f3e565f61e7490a806d4720ea7e/bee%2520movie%2520script
https://gist.githubusercontent.com/MattIPv4/045239bc27b16b2bcf7a3a9a4648c08a/raw/2411e31293a35f3e565f61e7490a806d4720ea7e/bee%2520movie%2520script
https://gist.githubusercontent.com/MattIPv4/045239bc27b16b2bcf7a3a9a4648c08a/raw/2411e31293a35f3e565f61e7490a806d4720ea7e/bee%2520movie%2520script
https://vim-adventures.com/
https://raw.githubusercontent.com/elastic/examples/refs/heads/master/Common%20Data%20Formats/apache_logs/apache_logs
https://raw.githubusercontent.com/elastic/examples/refs/heads/master/Common%20Data%20Formats/apache_logs/apache_logs
https://www.gutenberg.org/cache/epub/84/pg84.txt
https://imsc.uni-graz.at/hackl/teaching/cherry_tree.tar.gz

Software Development, W25 Benjamin Hackl

11. Learn about the terminal multiplexer tmux by following the short tutorial at https://hamvocke.

com/blog/a-quick-and-easy-guide-to-tmux/.

12. Read the first chapter1 of the book Software Engineering at Google and prepare to discuss the

content in the exercise session.

13. Learn about the command ssh-keygen and create a new SSH key pair using the option -t

ed25519 (what does it do?). Add the public key (usually located at ~/.ssh/id_ed25519.pub) to

your GitHub account (or any other Git hosting service of your choice if you don’t want to use

GitHub).

14. Read Chapter 16 (https://abseil.io/resources/swe-book/html/ch16.html) on Version Control of

Software Engineering at Google and prepare to discuss the content in the exercise session.

15. Complete the chapters Ramping Up, Moving Work Around, A Mixed Bag from the interactive

browser tutorial on branching with Git at https://learngitbranching.js.org/, take notes with your

solutions.

16. Use git log to determine how often the file at sympy/abc.py in the repository that can be

cloned from https://github.com/sympy/sympy has been modified.

17. Learn about aliases in Git (https://git-scm.com/book/ms/v2/Git-Basics-Git-Aliases) and setup the

alias lg to run the command

log --graph

 --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold

blue)[%an]%Creset'

 --abbrev-commit

 --date=relative

18. Create a new repository (git init) and commit a file fruit.txt containing a list of some of

your favorite fruits (one fruit per line). Add some more fruits in a second commit. Explain what

happens in each step to your repository when you run the following commands in order:

• git revert HEAD

• git reset --hard HEAD~1

• git restore --source=HEAD~1 fruit.txt

• git stash

• git stash pop

19. The Miller–Rabin (Pseudo)primality test contained in the openssl library can be found in their

repository at https://github.com/openssl/openssl, in the file crypto/bn/bn_prime.c. Use git

blame to find all line numbers of the “oldest” lines of code in this file. Who has authored them?

20. Create a new repository (or use one of the ones from the other exercises) with at least 3 different

commits. Let us call their hashes 𝐶1, 𝐶2, and 𝐶3. Keep an eye on the contents of the .git/refs

directory in your repository while you carry out the following tasks:

• Create a new branch feature starting at commit 𝐶1, then apply the changes introduced in

commit 𝐶3 on top of it using git cherry-pick.

• Tag commit 𝐶3 with the tag name v1.0.

• Create a new commit on top of main, then reset main to point to commit 𝐶2 using a hard reset.

What are the contents of the files in .git/refs after each step? And what about the .git/HEAD

file?

1https://abseil.io/resources/swe-book/html/ch01.html

2

https://hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
https://hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
https://abseil.io/resources/swe-book
https://abseil.io/resources/swe-book/html/ch16.html
https://learngitbranching.js.org/
https://github.com/sympy/sympy
https://git-scm.com/book/ms/v2/Git-Basics-Git-Aliases
https://github.com/openssl/openssl
https://abseil.io/resources/swe-book/html/ch01.html

Software Development, W25 Benjamin Hackl

21. Lean about git bisect (https://git-scm.com/docs/git-bisect), then complete the assignment

available in the repository at https://imsc.uni-graz.at/git/behackl/swdev-git-bisect.

22. Interactive Rebase. Clone the demo repository from

https://imsc.uni-graz.at/git/behackl/swdev-git-interactive-rebase.git

Unfortunately, the history in this repository is a (linear, but still) mess! Rebase all commits

starting at a5b4556 and ranging to the tip of main interactively to address the following issues:

• In ae8efe0, a .env file containing an important secret has been added by mistake. Remove the

file!

• The changes happening in commits a5b4556, ae8efe0, 950f370 should be consolidated into

one commit (with a more verbose commit message).

• Commit 2a41313 should be split into two separate commits: one for the multiplication

function, one for the division function. Write verbose commit messages.

(Hint: if fixing everything at once is too intimidating or confusing, go through multiple rounds of

interactive rebasing!)

23. Learn about pre-commit hooks in Git repositories (https://git-scm.com/book/ms/v2/Customizing-

Git-Git-Hooks). Create a new Python project (uv init) in a Git repository and add ruff as a

development dependency, then setup a pre-commit hook running linting and formatting (ruff

check, ruff format). Test your hooks by trying to commit a simple Python file with bad

formatting.

24. Type hints: make yourself familiar with the basic syntax introduced by PEP 484, then add

missing type hints to the file included in the practice repository at

https://imsc.uni-graz.at/git/behackl/python-typehint-playground

Make sure mypy --disallow-untyped-defs string_operations.py does not raise any errors or

warnings.

25. Read Chapter 21 (https://abseil.io/resources/swe-book/html/ch21.html) on Dependency Manage

ment of Software Engineering at Google and prepare to discuss the content in the exercise

session.

26. Use the Python library fastapi (https://fastapi.tiangolo.com/) to write your own simple web API

with the following endpoints:

(a) • /hello should return a response with a message attribute containing the string "Hello

World!".

• /hello/<name> should do the same, but the returned message should be "Hello

<name>!" (where <name> can be any string).

(b) • /convert-temperature?value=<number>&from=<unit>&to=<unit> where <number> is a

floating point number and <unit> is one of C, F, or K should return an object with a

converted attribute that corresponds to the converted temperature as a floating point

number as well as a message attribute that describes the conversion. For example, query

ing /convert-temperature?value=100&from=C&to=F should return

{

 "converted": 212.0,

 "message": "100.0°C --> 212.0°F"

}

Make sure that your API replies with a response with status code 400 if the input parame

ters are invalid (e.g., unknown units).

3

https://git-scm.com/docs/git-bisect
https://imsc.uni-graz.at/git/behackl/swdev-git-bisect
https://imsc.uni-graz.at/git/behackl/swdev-git-interactive-rebase.git
https://git-scm.com/book/ms/v2/Customizing-Git-Git-Hooks
https://git-scm.com/book/ms/v2/Customizing-Git-Git-Hooks
https://imsc.uni-graz.at/git/behackl/python-typehint-playground
https://abseil.io/resources/swe-book/html/ch21.html
https://fastapi.tiangolo.com/

Software Development, W25 Benjamin Hackl

(c) The fastapi library uses Swagger to automatically generate documentation for your API.

Where can you find it? What do you need to do to have your API support more complex

data types like a Lecturer object with name: str, id: int, and courses: list[str]

attributes?

27. Work through the Getting started guide of the polars library (https://docs.pola.rs/user-

guide/getting-started/), then load the iris dataset included in the seaborn library

(seaborn.load_dataset("iris") returns a pandas.DataFrame, which you can convert to a

polars.DataFrame). Print the statistical summary of the data set (describe), and find the indices

of the flowers with the smallest / largest petal length.

28. Path of Exile is an online action role-playing game developed by the New Zealand-based devel

oper Grinding Gear Games. It is particularly well known for its highly complex skill tree system

(https://poeplanner.com/). The complete skill tree for the latest version of the game (v3.27 just

released on 31. October 2025!) is available as data.json in the repository at

https://github.com/grindinggear/skilltree-export.

(a) Use the load function of the json module to load the data as a dictionary. Data on individual

nodes is stored in a dictionary under the nodes key. Construct a polars.DataFrame whose

rows correspond to the individual node data dictionaries. How many nodes are there in

total?

(b) Find all nodes whose name is the longest or the shortest, respectively. Which are the nodes

that award the most distinguished stats (with respect to the length of the list under the

stats key)?

29. Use the GeoSphere Austria API to determine which day has been the hottest and which has been

the coldest at 12:00 in the past 3 years? Use the measurements from the weather station at the

university (ID: 30).

30. Learn about the Python library beautifulsoup4 (https://beautiful-soup-4.readthedocs.io/en/

latest/) and write a short Python script that fetches the Top Events page from Graz

Tourism (https://www.graztourismus.at/en/events/event-calendar/top-events) and stores it in a

BeautifulSoup object.

(a) Extract the names of all events by finding all h3 elements with the img-teaser__title CSS

class.

(b) If you additionally know that the div-containers holding the content of the individual event

cards have the CSS class img-teaser__body, can you also extract the date(s) for each event?

31. Read Chapter 10 (https://abseil.io/resources/swe-book/html/ch10.html) on Documentation of

Software Engineering at Google and prepare to discuss the content in the exercise session.

32. Turn the code at https://imsc.uni-graz.at/git/behackl/python-typehint-playground into a proper

package with Sphinx-generated documentation.

(a) Add docstrings to all functions (containing at least a one-line summary and documentation

for the parameters), then use the autodoc extension for Sphinx to automatically generate

HTML documentation for this module.

(b) Pick a theme of your choice from https://sphinx-themes.org/ and use it to style your docu

mentation. Additionally, learn about admonition blocks and include at least two different

ones in your documentation.

(c) References to individual members of a package (modules, classes, functions) can be created

using so-called roles in Sphinx, written as (for example) :func:`some_function`. (Note:

these are backticks, not single quotes.) Read about roles in the Sphinx documentation and

add some to your documentation.

4

https://docs.pola.rs/user-guide/getting-started/
https://docs.pola.rs/user-guide/getting-started/
https://poeplanner.com/
https://github.com/grindinggear/skilltree-export
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://www.graztourismus.at/en/events/event-calendar/top-events
https://abseil.io/resources/swe-book/html/ch10.html
https://imsc.uni-graz.at/git/behackl/python-typehint-playground
https://sphinx-themes.org/

Software Development, W25 Benjamin Hackl

33. Create a simple Python package with sphinx-generated documentation. Setup Sphinx such

that it can also process Markdown files (MyST: https://myst-parser.readthedocs.io/). Configure

Sphinx to correctly parse NumPy or Google style formatted docstrings (https://www.sphinx-doc.

org/en/master/usage/extensions/napoleon.html).

34. Use the CPU and memory profilers discussed in the lecture (snakeviz, line_profiler, memray)

to analyze the sorting algorithms hosted at https://missing.csail.mit.edu/static/files/sorts.py.

Which algorithm “wins” in terms of run time, which in terms of memory consumption?

35. There are various ways to accelerate Python code. Two such mechanisms are implemented in

form of the Python library numba (https://numba.pydata.org) and the C extension framework

Cython (https://cython.org). Read up on one of the two and work through the respective in

troductory tutorial (https://cython.readthedocs.io/en/stable/src/tutorial/cython_tutorial.html for

Cython, https://numba.readthedocs.io/en/stable/user/5minguide.html for numba).

36. (a) Read parts of Chapter 11 (https://abseil.io/resources/swe-book/html/ch11.html, in particular

the sections Why Do We Write Tests?, Designing a Test Suite, The Limits of Automated Testing)

on Testing, …

(b) … as well as the Preventing Brittle Tests section, the Conclusion and TL;DRs of Chapter 12

(https://abseil.io/resources/swe-book/html/ch12.html) of Software Engineering at Google

and prepare to discuss the content in the exercise session.

37. Add unit tests (using pytest) to bring the test coverage (determined via pytest-cov) for our

demo project in https://imsc.uni-graz.at/git/behackl/python-typehint-playground to 100%.

38. Learn about parameterized tests in pytest. Write a parameterized test for the function

def is_sum_even(x: int, y: int) -> bool:

 return (x + y) % 2 == 0

that checks that the sum of two even numbers and the sum of two odd numbers is even, and that

the sum of an even and an odd number is not even.

39. The Python core library logging offers rich features for (properly – i.e., not by printing)

emitting log messages to users running your code.

(a) Setup: Create a new (minimal) Python package and paste the code snippet

import logging

logging.basicConfig()

logger = logging.getLogger("navi")

logger.setLevel(logging.INFO)

logger.debug("Wake-up call ...")

logger.info("Hey! Listen!")

into your __init__.py file. Run the code and consult the logging documentation to find out

what the code snippet does and why the output looks the way it does.

(b) Testing: Implement a function that, when called, uses the logger to emit a warning. Learn

about the pytest fixture caplog and use it to write a test checking that your warning really

has been emitted.

40. Create a GitHub repository containing a (minimal) Python package, then add a linting pipeline

running ruff format and ruff check. Make sure to pass the correct options such that the

5

https://myst-parser.readthedocs.io/
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://missing.csail.mit.edu/static/files/sorts.py
https://numba.pydata.org
https://cython.org
https://cython.readthedocs.io/en/stable/src/tutorial/cython_tutorial.html
https://numba.readthedocs.io/en/stable/user/5minguide.html
https://abseil.io/resources/swe-book/html/ch11.html
https://abseil.io/resources/swe-book/html/ch12.html
https://imsc.uni-graz.at/git/behackl/python-typehint-playground

Software Development, W25 Benjamin Hackl

pipeline fails when “bad” code is pushed to your repository. Push at least one bad commit to test

your pipeline.

41. Create a GitHub repository containing a (minimal) Python package with some functions that

have docstrings and setup rendering your documentation with Sphinx (you are free to use the

repository from one of the previous exercises). Setup a pipeline that runs the documentation

build and stores the output as a build artifact on every commit pushed to the main branch. Op­

tional, if you are interested: deploy the rendered documentation from the artifact to GitHub Pages.

42. PostgreSQL is a production-grade database system whose Docker image (postgres) is hosted at

https://hub.docker.com/_/postgres.

(a) Create a simple compose.yml file with only one service which runs the postgres image;

the instructions in the readme from DockerHub are useful. Do not, however, put the user

name / password for the database in your compose.yml: instead, use environment variables

defined in a .env file.

(b) Start (docker compose up) the container and spawn a shell (docker compose exec -

it servicename psql --user postgresuser). Run the following commands to create and

populate a table:

CREATE TABLE fruits (name TEXT, color TEXT, origin TEXT);

INSERT INTO fruits (name, color, origin)

VALUES

 ('Apple', 'Red', 'Italy'),

 ('Banana', 'Yellow', 'Ecuador'),

 ('Kiwi', 'Green', 'New Zealand'),

 ('Strawberry', 'Red', 'Spain'),

 ('Grape', 'Purple', 'France'),

 ('Lemon', 'Yellow', 'Italy');

You can verify that the data is stored by running SELECT * FROM fruits; in the database

shell. Stop and remove (docker compose down) your container, then bring it back up. Are

the fruits still there?

(c) Again, stop and remove your container, then modify compose.yml and specify the direc

tory /var/lib/postgresql/data inside the container to be a named volume. Repeat the

steps from (b) – did anything change? What is the output of docker volume ls?

43. Read this two-part blog post on How to do Code Reviews Like a Human by Michael Lynch:

https://mtlynch.io/human-code-reviews-1/, https://mtlynch.io/human-code-reviews-2/. Prepare

to discuss the content in class; do you agree with his suggestions?

44. Head to https://github.com/KFU-DATB31UB-25W/animal-fun-facts, read CONTRIBUTING.md, cre

ate a new issue or comment on an existing one – then fork the repository and submit a pull

request.

45. Find the repository for any open source project of your choice and prepare a short case study on

their development habits (cf. Slides 14 + 15 in the slide set of Chapter 7).

6

https://hub.docker.com/_/postgres
https://mtlynch.io/human-code-reviews-1/
https://mtlynch.io/human-code-reviews-2/
https://github.com/KFU-DATB31UB-25W/animal-fun-facts

